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Introduction 

There are many challenging tasks when developing autonomous driving features to cope with the 

various changes to the environment. Often lane markings are faded or are covered with snow or dirt and 

can be difficult for a camera-based detection system. In this report, VSI addresses the application of HD 

map assets to improve the safety and performance of automated vehicle features within the context of 

lane keeping and trajectories.  

VSI has been examining applications of HD maps in our test vehicle. In a previous report, we discussed 

map-based Adaptive Cruise Control (ACC) using the advised speed attributes from HERE’s HD map data. 

In this report, we apply HERE’s HD map data to a lane keeping application and examine performance of 

lane keeping with a map-based approach compared to a camera and computer vision-based approach.  

Map-based Lane Keeping 

Map-based lane keeping improves the performance and safety of automated driving systems, even Level 

2 systems. Most Level 2 solutions available today localize and plan their trajectories based on cameras 

used to detect the lane markers on the roadway. This can be somewhat problematic since these systems 

are totally dependent on the presence of those lane markings. 

An example of a problem that occurs when AV systems are performing computer vision only lane 

keeping is when there is a divergence in the lane lines as illustrated in Figure 1. The left image shows an 

example of when the vehicle momentarily changes its path to account for a widening in the lane. The 

result is annoying, although not particularly dangerous. In the second example (right), the AV system has 
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no understanding of the correct path to follow and under certain conditions the vehicle may veer to the 

right and follow the path of the exit ramp.  

 

Figure 1: These illustrations show examples of common lane keeping problems with computer vision only AV systems. Map 
assets can solve these common problems.  

Using a lane model from HERE’s HD Live Map can solve these common issues involved in computer 

vision only lane keeping. Also, if cars are expected to self-drive in inclement weather, they will have to 

stay in their lanes even when the vision-based sensors can no longer see the lane lines. Using a lane 

model and localizing the vehicle in real-time enables the AV system to perform accurate and reliable 

lane keeping functions regardless of lane marking visibility.   

System Prerequisites  

VSI uses the 2016 Kia Soul as our base vehicle and Nvidia’s Drive PX2 as a host AV computer. Prior to this 

project, we installed a GPS module, Honeywell 1120 IMU, and Velodyne 16 Puck LiDAR in the test 

vehicle. In this project VSI applies all critical elements of the hardware stack coupled with HERE’s HD Live 

Map for this lane keeping project. 

https://portal.visionsystemsintelligence.com/main_products/7440
https://portal.visionsystemsintelligence.com/main_products/1317
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Table 1: Basic Tools and Components 

 

Procedure 

Lane Keeping System 

As an initial part of our AV build process, we created a lane detection and lane centering stack which 

implements computer vision only lane keeping on our research vehicle. The following diagram shows 

the overall architecture of our computer vision only lane keeping system.

 

Figure 2: This diagram shows the overall data flow and functions of VSI’s computer vision only lane keeping system. 

https://portal.visionsystemsintelligence.com/pros/5
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For the project, VSI developed a new lane keeping system based on HERE’s HD lane model from the HD 

map. The following diagram shows the overall architecture of our map-based lane keeping system. 

 

Figure 3: This diagram shows the overall architecture of VSI’s map-based lane keeping system 

Parsing HERE HD Map Data – Lane Geometry Data 

HERE’s HD Live Map consists of multiple layers of data delivered in a map-tile format. These layers are 

categorized into three main layers including Road Model, HD Lane Model, and HD Localization Model. 

There are also many sub-layers under these main categories. The Road Model sub-layers contain general 

road topology, road centerline geometry, and road-level attributes. The HD Lane Model sub-layers 

provide lane topology data and lane-level attributes. The HD Localization Model supports different 

localization approaches by providing various localization data.  

To utilize the HD map to enhance ADAS or automated driving functionalities, we first need to 

understand what parts or layers of the map we need to use for a target application. For lane keeping, we 

use the layer called lane-geometry-polyline that has the precise lane geometry.   

After identifying which parts and layers are to be used, the next process is downloading the map data. 

Since HERE’s HD Live Map is divided into many tiles covering different square areas, we manually 
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download the data from the tiles that we plan to test drive on. We only downloaded the layer lane-

geometry polyline that we needed for this project. 

The next process is developing a function for parsing the tile data in real-time. HERE uses the Google 

Protobuf format for storing the tile data. There are many options for storing and parsing this map data 

to be useable quickly by the AV system. We conducted this process by reading the tile data from the 

Protobuf into C++ vectors or custom structures with vectors, including only the layers and tiles required 

for this application. While parsing the map data, we decode Morton codes and perform bitwise 

exclusive-or on each subsequent value with the previous value in the sequence. 

The Lane Geometry Tile that we process contains the geometry of lane boundaries and lane centerline 

paths. For our study, we only extract the lane centerline paths. Lane paths are stored as a sequence of 

3D points that represent the center of the lane. 

The following C++ pseudo-code represents how we parse HERE Protobuf Tile data that comes from their 

HD Live Map Lane Geometry Polyline layer. 

#include <cstdint> 

#include <iostream> 

#include <fstream> 

#include <string> 

#include <algorithm> 

#include "com/here/pb/hdmap/external/v1/lanes/layer-lane-geometry-polyline.pb.h" 

#include "com/here/pb/hdmap/external/v1/lanes/layer-lane-attributes.pb.h" 

#include "vsi/map_parsing/decode_morton_2d.h" 

 

using namespace std; 

using namespace com::here::pb::hdmap::external::v1::geometry; 

using namespace com::here::pb::hdmap::external::v1::common; 

using namespace com::here::pb::hdmap::external::v1::lanes; 

using namespace com::here::pb::hdmap::shared::v1::lanes; 

 

struct Coordinate { 

  long double latitude; 

  long double longitude; 

}; 

 

struct Processed_lane_geometry { 

  vector<Coordinate> coordinates; 

  int id; 

}; 

 

vector<Processed_lane_geometry> tileLanes; 
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//Parse Link Layer Data 

void parseLaneTileData(const LaneGeometryLayerTile& tile) { 

 

  ///creating our own ID to differentiate each lane centerline in a lane group 

  int lane_id = 0; 

 

  int64_t current_2d_encoding_int = tile.tile_center_here_2d_coordinate(); 

  pair<double, double> decoded_tile_center = decode_morton_2d(current_2d_encoding_int); 

 

  //Loop through each Lane Group 

  for (int i = 0; i < tile.lane_group_geometries_size(); i++) { 

    LaneGroupGeometry groupGeometry = tile.lane_group_geometries()[i]; 

 

    //////Loop Through Each Lane Path 

    for (int j = 0; j < groupGeometry.lane_geometries_size(); j++) { 

 

      double lat = decoded_tile_center.second; double lon = decoded_tile_center.first; 

      current_2d_encoding_int = tile.tile_center_here_3d_coordinate().here_2d_coordinate(); 

      LineString3dOffset theLanePathGeometry = 

groupGeometry.lane_geometries()[j].lane_path_geometry(); 

 

      //Creating a new lane and adding Â an ID 

      Processed_lane_geometry new_path; 

      new_path.id = lane_id; 

 

      ///Loop through all the points in the path 

      for (int k = 0; k < theLanePathGeometry.here_2d_coordinate_diffs().size(); k++) { 

 

        int64_t here_2d_coordinate_diff = theLanePathGeometry.here_2d_coordinate_diffs()[k]; 

        int64_t next_coordinate_int = (here_2d_coordinate_diff ^ current_2d_encoding_int); 

        std::pair<double, double> decoded = decode_morton_2d(next_coordinate_int); 

 

        /// Saving for next iteration 

        current_2d_encoding_int = next_coordinate_int; 

 

        //Creating a new coordinate and adding it to the link 

        coordinate new_coordinate; 

        new_coordinate.latitude = decoded.second; 

        new_coordinate.longitude = decoded.first; 

        new_path.coordinates.push_back(new_coordinate) 

      } 

      //Adding the new lane path to the list/vector of processed lane geometry 

      tileLanes.push_back(new_path); 

 

      lane_id++; 

    } 

  } 

} 

  



 

 

Copyright 2018 – VSI Labs   8 | Page 

 

The next step is to use this Lane Geometry data along with the vehicle’s precise position and orientation 

to calculate how the ego vehicle should adjust its steering (steering wheel) to stay aligned with the 

center of the lane. We compare the difference between the trajectory we want the vehicle to take and 

the vehicle’s current trajectory which we call the trajectory error. 

Receiving Geometric Pose Messages from a Localization Algorithm 

In order for sensor data and other important information to be communicated among the nodes 

involved in this project, we encapsulate them as ROS nodes. ROS, which stands for Robotic Operating 

System, provides a robust and efficient communications framework. With our localization algorithm 

engaged, we begin receiving a ROS pose message from the node for localization; this message includes 

our current position and orientation values. We translate these into usable formats, namely latitude and 

longitude for our position and Euler angles for our orientation.  

/* Receive geometric pose messages from ROS, translate position and orientation into usable 

formats and pass them on */ 

void localizationCallback(const geometry_msgs::PoseStamped msg) { 

 

  //extract geometric position and orientation 

  geometry_msgs::Pose pose = msg.pose; 

  geometry_msgs::Point position = pose.position; 

  geometry_msgs::Quaternion orientation = pose.orientation; 

 

  //translate position into latitude and longitude 

  coordinate current_position; 

  translateIntoCoordinate(position.x, position.y, current_position); 

 

  //translate orientation into Euler Angle 

  double yaw; 

  double pitch; 

  double roll; 

  toEulerAngle(orientation, yaw, pitch, roll); 

  double vehicle_orientation = yaw; 

 

} 

Calculating Orientation Error and Lateral Velocity Error 

We developed a function called calcError which calculates the difference in the vehicle’s orientation 

from the orientation which would keep the vehicle on the lane (angle_error), as well as calculating the 

vehicle’s lateral displacement from the center of the lane (lateral_error). This function takes in and uses 

a list of coordinates that represent the center of the lane the vehicle is following (lane_centerline_path), 

the vehicle’s current position (current_position), and the vehicle’s orientation (vehicle_orientation). 



 

 

Copyright 2018 – VSI Labs   9 | Page 

 

 

Figure 4: These images show how to calculate angle error and lateral error values for VSI’s lane keeping system 

These output error values are passed to PID controllers, through a processing pipeline and eventually to 

vehicle control systems. In our PID control algorithms, VSI uses a variety of techniques to track trajectory 

error over time and to calculate proper torque commands with the received information. 

The following subsections describe details of the error calculation process.  

Overall Process of Error Calculation 

● To find the angle_error, we must first find the desired_angle which would keep the vehicle 

closely following the center of the lane. 

● To find this angle, we find a point on the path that represents the center of the lane we are 

following some fixed distance ahead (look_ahead). We call this the lookAheadPoint. 

● We find this lookAheadPoint by traversing the lane centerline path by the fixed distance 

(look_ahead) starting at the point on the centerline path that is closest to the vehicle’s current 

position. It is important to note that the coordinates in the HERE map that represent the 

centerline path are distributed sparsely for minimal data size. Thus, VSI calculates the true 

closest point on the lane (called closestPoint) by using nearby lane points in HERE’s dataset. 
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● By using the lookAheadPoint and the vehicle’s position, we calculate the desired_angle 

necessary to keep on the lane. 

● Comparing the desired_angle and the current vehicle orientation we get the angle_error from 

the desired path. 

Finding the Closest Lane Point 

To find the closest point on the lane centerline, two coordinates from HERE’s data are used: The closest 

point on the centerline path preceding the vehicle, and the closest point on the centerline path 

following the vehicle (nearest_HERE_point and second_nearest_HERE_point). 

We loop through the lane points and store the point with the minimum distance to the vehicle’s current 

position. Once we have found the closest lane point, we use the vehicle’s current orientation to find the 

point on the opposite side of the vehicle by looking at the difference in latitude and longitude. These 

two points will be used to project a point that lies between these two points and is closest to the 

vehicle’s position. 

 

Figure 5: This image shows how to calculate the closest lane point by using HERE’s data 

 

Most of the time, the closest point on the lane will lie between two lane points rather than being a lane 

point itself. In the findClosestProjectedPoint method, we use linear algebra to project a line between the 

two points found in the findClosestHEREPoints method, as well as a line emanating from the vehicle’s 

position that is perpendicular to the lane centerline where it intersects. The intersection point of these 
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lines represents the closestPoint on the lane to the vehicle. This point is returned in a coordinate called 

closestPoint, which is passed in by reference.  

void findClosestProjectedPoint (coordinate point1, coordinate point2, coordinate 

current_position, coordinate& closestPoint) { 

  long double lon1 = point1.longitude; 

  long double lat1 = point1.latitude; 

 

  long double lon2 = point2.longitude; 

  long double lat2 = point2.latitude; 

 

  long double current_lon = current_position.longitude; 

  long double current_lat = current_position.latitude; 

 

  //using equation[ y = m(slope) + b Â ] 

  long double m = (lat2 - lat1) / (lon2 - lon1); 

  if (lon2 - lon1 == 0) { // if m is infinite 

    m = 1000000; 

  } 

  long double b = lat1 - m * lon1; 

  long double m_perpendicular = -1 * (lon2 - lon1) / (lat2 - lat1); 

  if (lat2 - lat1 == 0) { // if m_perpendicular is infinite 

    m_perpendicular = -1000000; 

  } 

  long double b_perpendicular = current_lat - m_perpendicular * current_lon; 

 

  closestPoint.longitude = (b_perpendicular - b) / (m - m_perpendicular); 

  closestPoint.latitude = m * lon1 + b; 

} 

Finding the Look Ahead Point 

When steering a vehicle to follow a lane, steering is not based solely on minimizing the distance 

between the vehicle and the center of the lane at the current moment but is also based on orienting the 

vehicle so that it will be centered in the lane at a point shortly in the future, which is called the 

lookAheadPoint. Finding a point further ahead in the lane is especially crucial when the lane curves, so 

that the vehicle can make proper steering adjustments ahead of time. In order to find this 

lookAheadPoint, we use the look_ahead value in-conjunction with the closestPoint coordinate to find 

two HERE coordinates in the lane_centerline_path, one coordinate that has a distance slightly less than 

the look_ahead value, preLookAheadPoint, and one coordinate that has a distance slightly greater than 

the look_ahead value, pastLookAheadPoint.  We use these two coordinates and the look_ahead 

distance value to calculate the lookAheadPoint.  
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void findLookAheadProjectedPoint(coordinate closestPoint, int forward_point_index, 
vector<Coordinate> lane_centerline_path, coordinate &lookAheadPoint) { 
  //find a lane point past the look_ahead distance which we'll use as a triangulation point 
  double overflowDistance; 
  coordinate preLookAheadPoint = closestPoint;  
  coordinate pastLookAheadPoint; // used for triangulating look ahead projected pt 
  for(int i = forward_point_index; i < lane_centerline_path.size(); i++){ 
    double dist = getDistanceAlongPath(lane_centerline_path.at(i), closestPoint); 
    if(dist > look_ahead) { 
      pastLookAheadPoint = lane_centerline_path.at(i); 
      preLookAheadDistance = getDistanceAlongPath(lane_centerline_path.at(i-1), 
closestPoint); 
      overflowDistance = look_ahead - preLookAheadDistance; 
      break; 
    } else { preLookAheadPoint = lane_centerline_path.at(i); } 
  } 
 
  // calculate LookAheadPoint using linear algebra 
  long double end_lon = pastLookAheadPoint.longitude; 
  long double end_lat = pastLookAheadPoint.latitude; 
 
  long double start_lon = preLookAheadPoint.longitude; 
  long double start_lat = preLookAheadPoint.latitude; 
 
  long double m = (end_lat - start_lat) / (end_lon - start_lon); 
  if (end_lon - start_lon == 0) { 
    if (end_lat - start_lat > 0) m = 1000000; 
    else if (end_lat - start_lat < 0) m = -1000000; 
  } 
 
  long double lon_diff = sqrt(pow(look_ahead, 2) / (pow(m, 2) + 1)); // always positive 
  long double lat_diff = m * lon_diff; 
 
  long double look_ahead_lon; 
  long double look_ahead_lat; 
  if (end_lon - start_lon >= 0 && end_lat - start_lat >= 0) { // Q1 
    look_ahead_lon = start_lon + lon_diff; 
    look_ahead_lat = start_lat + lat_diff; // lat_diff is positive 
  } 
  else if (end_lon - start_lon <= 0 && end_lat - start_lat >= 0) { // Q2 
    look_ahead_lon = start_lon - lon_diff; 
    look_ahead_lat = start_lat - lat_diff; // lat_diff is negative 
  } 
  else if (end_lon - start_lon <= 0 && end_lat - start_lat <= 0) { // Q3 
    look_ahead_lon = start_lon - lon_diff; 
    look_ahead_lat = start_lat - lat_diff; // lat_diff is positive 
  } 
  else if (end_lon - start_lon >= 0 && end_lat - start_lat <= 0) { // Q4 
    look_ahead_lon = start_lon + lon_diff; 
    look_ahead_lat = start_lat + lat_diff; // lat_diff is negative 
  } 
 
  lookAheadPoint.longitude = look_ahead_lon; 
  lookAheadPoint.latitude = look_ahead_lat; 
} 

 

 



 

 

Copyright 2018 – VSI Labs   13 | Page 

 

Calculating Error Main Function 

 
This is the code snippet of the whole process of orientation and lateral error calculations. After 

calculating errors, these error values are passed to PID controllers for final control processing. 

//calculate angle_error - difference in vehicle orientation from orientation which would 

keep on lane 

//calculate lateral_error - difference in lateral position required to re-encounter the lane 

long double angle_error; 

long double lateral_error; 

calcError(current_position, vehicle_orientation, &angle_error, &lateral_error, 

lane_centerline_path); 

 

//These error values are then passed to PID controllers for final control processing 

//Calculate angular and lateral error necessary to follow the lane 
void calcError(coordinate vehicle_position, long double vehicle_orientation, long double* 
angle_error, long double* lateral_error, vector<Coordinate> lane_centerline_path) { 
 
  //find closest HERE points to calculate the true closestPoint 
  coordinate nearest_HERE_point; 
  coordinate second_nearest_HERE_point; 
  findClosestHEREPoints(lane_centerline_path, vehicle_position, &nearest_HERE_point, & 
second_nearest_HERE_point); 
 
  //calculated true closest point along lane centerline 
  coordinate closestPoint; 
  findClosestProjectedPoint (nearest_HERE_point, second_nearest_HERE_point, 
vehicle_position, &closestPoint); 
 
  //find a coordinate on a lane segment at a distance of look_ahead 
  coordinate lookAheadPoint; 
  findLookAheadProjectedPoint(closestPoint, lane_centerline_path, &lookAheadPoint); 
 
  //find desired angle 
  long double diff_lat = lookAheadPoint.latitude - vehicle_position.latitude; 
  long double diff_lon = lookAheadPoint.longitude - vehicle_position.longitude; 
  long double desired_angle = atan(diff_lat/diff_lon); 
 
  //convert desired_angle to a Euler angle from the coordinate space 
  if(diff_lat >= 0 && diff_lon >= 0); //Quadrant 1 - Do Nothing 
  else if(diff_lat >= 0 && diff_lon <= 0) // Q2 - pi + currentAngle 
    desired_angle = M_PI + desired_angle; 
  else if (diff_lat <= 0 && diff_lon <= 0) // Q3 - (-pi) + currentAngle 
    desired_angle = -1 * M_PI + desired_angle; 
  else if (diff_lat <= 0 && diff_lon >= 0); //Quadrant 4 - Do Nothing 
 
  //calculate angular error 
  if(desired_angle > M_PI_2 && vehicle_orientation < 0) 
    angle_error = abs(desired_angle + vehicle_orientation) * -1.0; 
  else if(desired_angle < 0 && vehicle_orientation > M_PI_2) 
    angle_error = abs(desired_angle + vehicle_orientation); 
  else angle_error = desired_angle - vehicle_orientation; 
  //calculate lateral_error 
  lateral_error = getDistance(vehicle_position, closestPoint); 
  if (angle_error < 0) lateral_error *= -1; 
} 
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Observations & Results 

VSI tested our lane keeping system based on HERE’s HD Live Map data at various locations. In this 

section, we discuss our test results by comparing how lane keeping performs when using an HD map 

versus a computer vision only approach. We also address some challenges with map-based ADAS in this 

section. 

Test #1: Lane Lines Expanding into a Turn or Exit Lane 

VSI tested our lane keeping system with and without map data on a local road near our office. The left 

picture in Figure 6 shows the satellite image of the test location. The picture in the middle shows lane 

information of the road from HERE’s HD map dataset. It shows the lane markings (yellow lines) and 

centerline (green lines) information of each lane. The right image shows a point-cloud map overlaid with 

the lane centerline the vehicle is following from HERE’s HD map data. Our test vehicle approached the 

intersection shown on the top part of the picture from the south. 

 

Figure 6: These pictures show different map images of the test location. The left picture shows the satellite image of the test 

location. The picture in the middle shows lane information of the road from HERE’s HD map dataset. The right picture shows 

a point-cloud map overlaid with the lane centerline the vehicle is following from HERE’s HD map data. 
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The following images show the recorded paths the vehicle traveled with the lane keeping system 

engaged. From these images you can see that the map-based lane keeping system (left) continued to 

stay in the center of its non-turn lane as the yellow lane line expanded into the left turn only lane. 

However, the computer vision only lane keeping system (right) veered into the turn lane requiring the 

human driver to disengage the system and direct the vehicle back into the correct lane. This is a 

common behavior of camera-only lane keeping systems when approaching turn lanes or exit lanes. The 

algorithm finds it difficult to distinguish which lane markings are meant for it to follow in order to 

maintain the current lane when the lane line has expanded into a completely new and undesirable lane 

to be in. This behavior can be annoying for passengers and could lead to a potential accident as the 

vehicle begins following an undesirable path. 

     

Figure 7: These images show a comparison of the two test results. The left picture shows the test result of the map-based 
lane keeping system by using HERE’s HD map data. The right picture shows the test result of the computer vision only lane 
keeping system. 
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Test #2: An Intersection Without Lane Lines 

In this scenario, we tested our lane keeping system at an intersection where there is a break in lane 

lines. Figure 9 shows a comparison of the recorded paths the vehicle traveled with the computer vision 

only lane keeping system (red) and the map-based lane keeping system (green). The vehicle approached 

the intersection shown on the bottom part of the image from the east (left).  

 

Figure 8: This picture shows the satellite image of the test location. VSI tested our lane keeping system at an intersection where 
there is a break in lane lines. 

 

Figure 9: This image shows a comparison of the recorded paths the vehicle traveled with the computer vision only lane keeping 
system (red) and the map-based lane keeping system (green).  

The map-based lane keeping system stayed in the desired trajectory which is driving straight and 

proceeding through the intersection. On the other hand, the computer vision only lane keeping system 
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gradually deviated when the system could not detect any lane lines between the end of the lane lines 

that the vehicle was following and the beginning of the lane lines in the opposite side of the 

intersection. The vehicle proceeded through the intersection, but it veered into the right resulting in the 

human driver disengaged the system.  

 

Figure 10: This image illustrates that a computer vision only lane keeping system cannot provide proper steering control 
without any lane lines ahead. 

This example illustrates that a computer vision only lane keeping system does not know the correct path 

to follow when it cannot see the lane lines on the road. The system becomes blind and cannot provide 

proper steering control even in a simple intersection like this test location. This will become problematic 

to use computer vision only keeping systems especially on local roads.  

Test #3: A Widening in the Lane 

In this location, we tested our lane keeping system on a local road where there is a widening in the lane.  

Our vehicle traveled from the east to the west (left to right) and intended to drive straight and pass the 

intersection shown on the bottom part of the image. Figure 12 shows a comparison of the recorded 

paths the vehicle traveled with the computer vision only lane keeping system (red) and the map-based 

lane keeping system (green).  
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Figure 11: This picture shows the satellite image of the test location. VSI tested our lane keeping system on a local road 
where there is a widening in the lane.  

 

Figure 12: This image shows a comparison of the recorded paths the vehicle traveled with the computer vision only lane 
keeping system (red) and the map-based lane keeping system (green).  

As the vehicle approached the intersection, the right lane line which the vehicle was following, extended 

towards the outside of the curb creating a space for a right-turn. While the map-based lane keeping 

stayed in the desired trajectory regardless the changes of the lane markings, the computer vision only 

lane keeping system followed the right lane line and slightly changed its path. The vehicle veered into 

the right side of the road resulting in the human driver disengaging the system to prevent an accident.  

This behavior of computer vision only lane keeping systems can be also seen in other situations like 

merging lanes shown in Figure 1. When a computer vision only system follows the misleading lane 

markings, it changes its path momentarily even though that is not where the vehicle should be driving. 

In some cases, the system fixes its path on its own by finding new lane markings to follow and returns to 
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a desired trajectory. However, that is still not an ideal behavior and would not be comfortable for 

passengers.  

Challenges 

One of the key challenges with HD maps is to keep map data up-to-date. The map needs to be updated 

frequently and accurately. Also, it is important for AVs to understand when the map data has been 

updated and how reliable the data is.  

HERE’s HD Map Live offers a technique called the Quality Index to provide information about how 

recent and certain the data is. For example, there is recent construction and changes to the lane 

boundaries on a given road segment (called a Link). If HERE has received enough confirmations about 

the change from the fleet vehicles that have recently driven through this Link, then the Link is marked 

with a higher value in the quality index. On the other hand, if there have been no fleet vehicles that 

have recently driven through this Link, the Link’s quality is shown as a low-quality index. It is useful for 

AV systems to receive such dynamic information so that the systems can be programmed to use their 

on-board sensors or alert the human driver to retake control in certain parts of the map that are not up-

to-date or have a low-quality index.  

In addition, in order to make use of map data more accurately and effectively with AV systems, it 

requires accurate and reliable localization. However, to achieve high precision localization, it could 

require expensive hardware or additional processing power and software components for AV systems 

which might not be realistic for series production consumer vehicles.  

Alternative Solutions 

As an alternative, a different kind of localization method could have been used for this map-based lane 

keeping project such as an RTK-based solution or a visual landmark matching solution.  

Additionally, VSI designed our map-based lane keeping system to follow lane centerline paths, but a 

system could also be designed to use the lane boundaries and steer accordingly to stay centered 

between the lane boundaries. 
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It is also important to note that this VSI research project demonstrates the potential and advantages of 

using HD maps with LiDAR to enhance lane-level functions However, there are alternative or 

supplementary approaches to achieve similar results that may differ from our approach. 

• For example, common approaches using correction service rely on GNSS/RTK/IMU solutions 

against a lane model.  

• While VSI used LiDAR, it is possible to perform localization with cameras instead of LiDAR. 

• Alternative approaches likely use a combination and fusion of both map-based lane keeping and 

computer vision/real-time sensing-based lane keeping rather than lane keeping based solely on 

map data.  

• These vehicles’ map-based lane keeping systems could be linked to a more advanced routing 

engine for path planning and following which enables the AV system to understand what lane 

segments the vehicle is driving on and what segments the vehicle is going to be driving on next. 

• These vehicles would be most likely to feature some form of connectivity such as a cellular 

connection and a system that dynamically downloads new map updates and new map tile data. 

Conclusion 

• In the context of automated driving, precision maps are used for various tasks such as path 

planning and localization. Map data can also improve the performance and safety of automated 

driving systems. 

• Computer vision only lane keeping systems tend to get confused and make errors in a vehicle’s 

trajectory when lane lines are out of the ordinary or invisible. Using a lane model from an HD 

map can solve common issues involved in computer vision only lane keeping.  

• VSI observed that our map-based lane keeping system provided more reliable and consistent 

performance over our computer vision only lane keeping system during the tests. The map-

based system operated properly in situations like a lane with misleading lane markings and an 

intersection without any lane lines.  

• One of the key challenges with HD maps is to keep map data up-to-date. Also, it is important for 

AV systems to know how recent and reliable the map data is in order for these systems to make 

proper judgments such as using the data from on-board sensors instead of the map data or 

requesting the human driver to take over in areas with a low-quality index. 
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Conditions of this Report 

In no event shall Vision Systems Intelligence, LLC. (aka. VSI, or VSI Labs) including partners, owners 

employees or agents, be liable to you or any other party for any damages, losses, expenses or costs 

whatsoever (including without limitation, any direct, indirect, special, incidental or consequential 

damages, loss of profits or loss opportunity) arising in connection with your use of this information. The 

information was conducted on a best efforts basis. No guarantee can be made about the completeness 

or accuracy of the information appearing in this report. VSI shall be held harmless for claims against 

HERE resulting from these experiment results, or this paper.  


